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This paper describes numerical experiments on solving linear systems of equations that arise 
in reservoir simulations. The well-known conjugate-gradient methods Orthomin and Gmres 
are compared to the biconjugate-gradient method and to an accelerated version called the 
conjugate-gradient squared method. An incomplete factorization technique based on the level 
of till-in idea is used, with investigations to find the appropriate level. Finally, the influence 
of a reordering method on the convergence rate is tested. 0 1990 Academic Press, Inc. 

1. INTR~DDCTI~N 

In recent years the use of conjugate-gradient type methods to solve linear systems 
of equations has been developed and some improvements have been made in order 
to construct fast and robust algorithms. The acceleration of iterative methods 
devoted to ill-conditioned systems seems to be promising. In this paper the 
conjugate gradient squared method introduced by Sonneveld is tested on reservoir 
simulation problems. 

Though the natural way to solve a linear system of equations progresses in a 
reordering phase, an incomplete factorization phase, and a solving phase, we 
present our results inversely in order to preserve the relative influence of each phase 
on the final computing time. 

2. ITERATIVE METHODS 

Orthomin [3] and Gmres [ 121 are very popular methods in reservoir simula- 
tion, so we summarize their main properties in a few words. Both of them deal with 
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the minimization of the residual norm 11 r 11 = 11 b-Ax 11 on the finite dimension 
space Ek spanned by the Krylov sequence Y’, Ar’, . . . . Akro, where r” is the initial 
residual. A basis of Ek is generated iteratively by adding a new direction orthogonal 
to all the previous ones. With appropriate hypothesis, convergence is obtained after 
n iterations, where n is the number of unknowns of the linear system. As the process 
needs the storage of the complete directions set, it is periodically restarted after m 
steps (m to be chosen) to save storage. Although they both work identically, 
Orthomin and Gmres differ on the orthogonalization procedure: Orthomin uses the 
scalar product associated to the residual norm (Ad, Ad’), while Gmres uses the 
natural scalar product (d, d’). The first method needs the storage of the m direc- 
tions d used and the m associated products Ad, but gives the result without an extra 
computation cost. The second method uses only the m directions d, but on the 
other hand, the minimization step requieres to solve a least squares problem. 

The biconjugate-gradient method (Beg ) [ 23 is an extension of the standard 
preconditioned conjugate gradient method (Cg) to a symmetric system of double 
size 

using preconditioner 

0 I [ 1 I 0 
see [S]. Since the matrix is indefinite, the minimization argument of Cg becomes 
ineffective and the residual norm may increase during iterations. So the algorithm 
is based rather on an orthogonalization process of the residuals, than on a mini- 
mization procedure of the residual norm. Furthermore, the adjoint system A ‘y = c 
doubles the computational cost per iteration. In spite of these defects, the method 
works well, and because it deals with a symmetric system, it does not need the 
storage of all the previous directions. 

The usual form of Beg is 

- Choose an arbitrary x0 

- Set 

r’=b-Ax0 

and 
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- until convergence Do 

cik = (sk, rk)/(qk, Apk) 

Xk+LXk+&pk 

rk+‘=rLakApk 

Sk+&Sk-ClkATqk 

B k+l- - (ski- ‘, rk+‘)/(.sk, rk) 

P k+l=rk+l+Bk+lpk 

4 
k+l =Sk+l+pk+Iqk 

In this formulation the adjoint vector yk has been eliminated and the associated 
starting residual so = c - ATyo is set equal to r” = b - Ax’. The vectors rk, pk, sk, 
and qk satisfy 

(Sk, r’) = 0 for k#I 

(qk, AP’) = 0 for k#l 

with (., .) being the natural scalar product in R”. 
Furthermore, we have 

rk = cjk(A) r” 

sk=c+hk(AT)rO 

pk = 8,(A) r” 

qk = 8,(AT) r”, 

where dk and 19~ are polynomials of degree k. 
In order to accelerate the biconjugate gradient method, Sonneveld [14] has 

constructed an algorithm for which the residual after k iterations is d:(A) r” instead 
of cjk(A) r”. So if Beg converges, dk(A) represents a contraction for large values of 
k, and then &(A) represents a contraction of smaller norm, leading to a faster 
convergence. 

By squaring the induction relations 

he obtains the so-called conjugate gradient squared method (Cgs), that we can 
summarize in the following way: 
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- Choose an arbitrary x0 

- Set 

301 

rO=b-Ax0 

and 

qo=po= p 

-until convergence Do 

ak = (r’, rk)/(rO, Aqk) 

xk+l=xk+ak(pk+pk-akAqk) 

rk+ ’ = rk - akA( pk + pk - akAqk) 

P k+l=(ro, rk+l)/(ro, rk) 

P k+l=rk+l+~k+l(pk_ak~qk) 

4 k+l=pk+l+Ijk+l(Bk+lqk+pk_akAqk). 

The computational work per iteration is about the same as in the initial formula- 
tion (Beg), but multiplications by AT are avoided, so a vectorized version of Cgs 
refers only to standard techniques. The vector u =pk - akAqk, which appears many 
times in each iteration, has to be stored to save computational time. 

3. INCOMPLETE FACTORIZATION 

The use of a preconditioner is now a classical way to accelerate the convergence 
of iterative methods, a lot of papers have improved this technique: [ 1, 111 and 
many others.. . 

In this paper, we use the incomplete factorization developed by [7,9,4], which 
works in two steps. The first step is a symbolic incomplete factorization to deter- 
mine the non-zero locations in the L.U factors through the level of fill-in idea. The 
second step computes the coefficients of the associated incomplete factors. 

We summarize the symbolize factorization in defining for each fill-in term a level 
by an induction argument 

- the level is set equal to zero for all non-zero coefficients in A. 

- the fill-in terms which arise due to the elimination of a level k term are set 
to level k + 1. 
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Clearly after a few steps of this process, we obtain the complete factorization of 
A, for the deepest level, say I(,4 ). For incomplete factorizations some level 1, 
0 d I < 1(A), has to be chosen in order to accelerate the iterative methods. This 
method, which deals with any matrix, is a generalization of the incomplete 
factorization described by [6] for matrices of very regular structure arising in finite 
difference regular grids. 

4. REORDERING 

As I(A) depends on the ordering of the unknowns a permutation which produces 
a minimum fill-in or a minimum level 1(A) must be found. The minimum degree 
algorithm [S] and the nested dissection algorithm [S] are well known to provide 
less fill-in than the natural ordering (see for reservoir simulation improvements 
[7,9], for example). Here we used first the natural ordering, then the D4 ordering 
(equivalent to the red-and-black ordering), which is well adapted to regular finite 
difference grids. 

5. TEST PROBLEMS 

The test problems arise from a three-dimensional reservoir simulation model 
using a seven points finite difference scheme on a n* ny * nz grid with nc equations 
and unknowns per grid block. For a complete description of the physics, we refer 
to [lo]. Table I gives the values of the different parameters. These problems are 
often used as benchmarks to test the performance of iterative methods, for example, 
[13] presents numerical experiments of the Itpack code on vector computers to 
solve these linear systems. 

6. NUMERICAL RESULTS 

Numerical experiments have been performed on a NAS 9080 computer using 
double precision variables (64 bits per real*8 word). Convergence is obtained when 

TABLE I 

Problem nx nY “Z nc n 

1 10 10 10 1 loo0 
2 6 6 5 6 1080 
3 35 11 13 1 5005 
4 16 23 3 1 1104 
5 16 23 3 3 3312 
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TABLE II 

Results for Problem 1 with KU(O) Preconditioner 

Algorithm 
Number of 
iterations Time 

Orthomin 5 42 0.6696 
10 46 0.9105 

Gmres 5 15” 1.1558 
10 6” 0.9709 

Beg 41 0.8449 

C@ 34 0.7395 

a Number of least squares problems to solve. 

11 rk ll/ll roll is less than 10e6 and the number of iterations less than n/5, where 
n = nx * ny * nz * nc is the total number of unknowns. The initial guess x0 = 0 is 
fixed for all the runs presented. Execution times, including factorization and 
iterations times, are given in seconds. 

6.1. Iterative Methods 

We first compare the four algorithms using the same preconditioner on the five 
test problems with natural ordering: the incomplete factorization of level 0 is used. 

Orthomin and Gmres are used with 5 directions and 10 directions. Results are 
given in Tables II to VI. We note that an expected breakdown of Beg does not 
occur, thus this algorithm converges faster than both Orthomin and Gmres on 
Problems 3, 4, and 5. The accelerated version Cgs gives good convergence rate and 
total time cost (in fact, the best ones if excluding the first problem). 

TABLE III 

Results for Problem 2 with KU(O) Preconditioner 

Algorithm 
Number of 
iterations Time 

Orthomin 5 20 0.9501 
10 20 0.9797 

Gmres 5 4= 0.9570 
10 2” 0.9315 

Beg 19 1.4468 

(23s 10 0.7715 

a Number of least squares problems to solve. 
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TABLE IV 

Results for Problem 3 with KU(O) Preconditioner 

Algorithm 
Number of 
iterations Time 

Orthomin 5 150 13.7952 
10 151 17.6515 

Gmres 5 240” 21.8188 
10 180” 15.3783 

Beg 97 12.1372 

cgs 66 8.0467 

a Number of least squares problems to solve. 

TABLE V 

Results for Problem 4 with KU(O) Preconditioner 

Algorithm 
Number of 
iterations Time 

Orthomin 5 72 1.1728 
10 52 1.1085 

Gmres 5 23” 1.6776 
10 9” 1.4307 

Beg 32 0.8000 

ci3 23 0.4979 

a Number of least squares problems to solve. 

TABLE VI 

Results for Problem 5 with KU(O) Preconditioner 

Algorithm 
Number of 
iterations Time 

Orthomin 

Gmres 

Beg 

(23s 

5 
10 

5 
10 

Stagnation 
Stagnation 

33” 
10” 

41 

25 

- 

8.7848 
6.6467 

4.2082 

2.4743 

a Number of least squares problems to solve. 
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6.2. Incomplete Factorization 

The incomplete factorization using the level idea has been used, we give in 
Table VII the results for the Cgs method on Problem 1 (natural ordering), for 
which the complete series from level 0 to level f(A) can be computed. NZ is the 
number of non-zero coefficients in the L.U factors. We observe that the number of 
iteration steps decreases as the level of fill-in increases, but the gain of time spent 
in the iterations is progressively overcome by the increasing factorization time. 
Note that from level 8 to 13 (13 corresponding to the complete factorization), just 
one iteration is sufftcient to satisfy the convergence criterion, but the residual norm 
continues to decrease as the level increases. The best total computing time is 
obtained for level 2. 

The same experiment on Problems 2 to 5, leads to an analogous behaviour of the 
Cgs method. For these problems, the optimal level in regard with the computing 
time is 1. 

Total Time : Factorizstlon + Iteration 

2. 

.8 

.4 

.3 

cl 

cl 
0 

q 0 
Natural ordering 

D4 ordering 

cl 

0 

Level 
I I I I I I I I I I I I I 
I I I I I I I I I I I * 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

FIG. 1. Total time versus level, comparison of natural, and D4 orderings. 
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6.3. Reordering 

Using the D4 (or red-and-black) ordering, we solve again the first problem with 
the Cgs algorithm. We obtain the same behaviour of the total computing time 
versus the level of fill-in, but the value of I(A) is then 7, and the best total time 
corresponds to level 2 (see Table VIII). Figure 1 summarizes the comparison of the 
results of Tables VII and VIII. Problems 2 to 5 provide the same results. So we get 
some performance gain by using a reordering algorihtm, and a level of fill-in > 0. 

Another point of interest is that the level idea leads to significant improvement 
of the convergence. Figure 2 summarizes the evolution of the residual norm for 
different values of the level (Problem 1, Cgs method, D4 ordering). For level 0, we 
observe drastic oscillations which are the natural convergence behaviour of the Cgs. 
method (we recall that this algorithm does not minimize the residual norm). For 
level 1, oscillations have disappeared and the convergence is monotone. So we see 
that the use of an incomplete factorization can enhance the properties of an 
iterative method. 

10 20 30 40 50 
I 1 

log 10 (residualI 

4 

: 

I-. level 

iterations 

FIG. 2. Cgs convergence versus level. 
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7. CONCLUSION 

(1) We have compared four iterative methods to solve reservoir simulation 
problems, which are considered to be very difficult. The Cgs algorithm gives the 
best total execution time and never breaks down in our experience. 

(2) We have used the incomplete factorization with the level idea; we obtain 
the bests results for a value of 1 or 2. 

(3) The use of the D4 reordering method yields an expected acceleration of 
the convergence rate and some gain on the total computing time, if used with a 
level > 0. 
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